L1 Norm, L2 Norm, Squared L2 Norm, Infinity Norm 한 번에 정리하기 : Numpy, TensorFlow, PyTorch 에서 사용하기

    L1 Norm, L2 Norm, Squared L2 Norm, Infinity Norm 한 번에 정리하기 : Numpy, TensorFlow, PyTorch 에서 사용하기

    L1 NormL1 Norm은 벡터의 각 성분의 절대값의 합으로 정의된다. $\| \mathbf{x} \|_1 = \sum_{i=1}^{n} |x_i|$ 예를 들어 $[10,-3,2]$의 L1 Norm은 15이다. 장점L1 Norm은 0과 0이 아닌 값 사이의 차이를 직관적으로 나타낸다. 벡터의 각 성분이 조금이라도 0에서 멀어지면 L1 Norm 값도 바로 변화하기 때문이다. L2 NormL2 Norm은 벡터의 각 원소의 제곱의 합의 제곱근으로 정의된다. 유클리드 거리라고도 불리며, 다음과 같은 수식으로 표현된다. $\| \mathbf{x} \|_2 = \sqrt{\sum_{i=1}^{n} x_i^2}$ 예를 들어 $[3,4]$의 L2 Norm은 5이다. 장점벡터의 실제 물리적 길이를 나타내므로 직관적이다..